سیستم استنتاج فازی – Fuzzy Inference Systems (FIS)

  • Fuzzy if-then rules are of the form IF A THEN B where A and B are labels of fuzzy sets.
  • Example

if pressure is high then volume is small”

   

ممداني، سوگنو، لارسن و تاكاگي

ممداني: متغييرهاي ورودي در اين روش فازي و خروجي هم فازي مي‌باشد.

سوگنو: مانند ممداني ولي ورودي ها فازي ولي خروجي مي‌تواند فازي نباشد.

تاكاگي: مانند ممداني ولي در خروجي از ميانگين وزني استفاده مي‌شود.

لارسن: تفاوت مهم آن با روش‌هاي قبلي در متغييرهاي ورودي هستند كه مي‌تواند هم فازي و هم غير فازي باشد.

انواع سیستم های استنتاج فازی (۱) (ممدانی)

  • سیستم های فازی خالص

    انواع سیستم های استنتاج فازی (۲)

    • سیستم های فازی تاکاگیسوگنو و کانگ (TSK)
    • یک میانگین وزنی از مقادیر بخش هاي آنگاه قواعد می باشد.
    • قسمت مقدم قواعد، فازی اما قسمت نتیجه، غیرفازی و ترکیبی خطی از متغیرهای ورودی است.

    Sugeno model

    Assume that the fuzzy inference system has two inputs x and y and one output z.

    A first-order Sugeno fuzzy model has rules as the following:

     Rule1:

            If x1 is A11 and x2 is A21, then y = p1x1 + q1x2 + r1

     Rule2:

            If x1 is A12 and x2 is A22, then y = p2x1 + q2x2 + r2

    مدل Sugeno

تکنیک های استنتاج فازی

گریزی بر شبکه های عصبی

  • شبکه های عصبی یک مدل محاسباتی از عملیاتی است که در مغز انسان صورت می گیرد . شبکه های عصبی از تعدادی گره تشکیل شده است که توسط ارتباطاتی به هم متصل می باشند.

هر ارتباط یک وزن عددی مختص به خود دارد.

  • وزن ها ابزار اصلی ذخیره سازی طولانی مدت هستند.
  • شبکه های عصبی می توانند وزن ها را به منظور بهبود عملکرد یک کار خاص، تنظیم نمایند.
  • یک گره از چندین ورودی از سایر گره ها و از چندین خروجی و از یک تابع غیر خطی (تابع فعال) تشکیل شده است.
  • شبکه های عصبی به دو گروه Feed forward و Feedback تقسیم بندی میشوند.

دو نوع الگوریتم یادگیری در شبکه های عصبی

  • شبکه پرسپترون چند لایه و الگوریتم یادگیری آن

  • الگوریتم یادگیری Error Back propagation
  • ارزیابی تغییرات وزن

سیستم های فازی و شبکه های عصبی

  • هر دو روش مکمل یکدیگرند
  • شبکه های عصبی قابلیت یادگیری از داده ها را دارند در حالی که سیستم های فازی نمی توانند.
  • فهم سیستم های فازی به دلیل استفاده از اصطلاحات زبان شناسی و قوانین اگر – آنگاه می باشند در حالی که شبکه های عصبی اینگونه نیستند.
  • شبکه های عصبی قابلیت یادگیری سطح پایین و توان محاسباتی بالایی
  • سیستم های فازی قابلیت تفکر انسان گونه ی سطح بالا

ANFIS

Adaptive Network-based Fuzzy Inference Systems

سیستم های تطبیقی استنتاجی فازی مبتنی بر شبکه

Adaptive Neural-fuzzy Inference System

سیستم های نورو- فازی تطبیقی

معرفی ANFISS

  • ANFIS مخفف adaptive network-based fuzzy inference system می باشد.
  • توسط دکتر راگر جانگ (Rogger Jang) درسال ۱۹۹۳ معرفی شد.
  • یک شبکه تطبيق پذير و قابل آموزشی است (خود را با داده های آموزشی تطبیق می دهد) که به لحاظ عملکرد کاملا مشابه سيستم استنتاج فازی است.
  • برای استفاده کارآمدتر می توان در آن از پارامترهای الگوریتم ژنتیک نیز استفاده نمود.
  • سیستم های ANFIS در اصل یک سیستم  TSK (تاگاکی- سوگنو-کانگ) درجه ۱ هستند.
  • ANFIS از الگوریتم یادگیری HYBRID استفاده می کند.
  • از آنجا که تعیین پارامترهاي توابع عضویت در قسمت مقدم قواعد و همچنین تعیین ضرائب قسمت تالی قواعد همانند تعیین وزنهاي شبکه عصبی است به کمک روش هایی مثل الگوریتم هاي پس انتشار خطا انجام می شود.